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SUMMARY 

Numerous experimental results have demonstrated similar behavior of the velocity 
profile in the near-wall region of the turbulent boundary layer using Prandtl’s “Plus” 
scaling variables.  However, the implications for similarity behavior of the near-wall 
turbulent boundary velocity profiles using Prandtl’s Plus scaling variables have not been 
carefully explored.  In the following report, we apply the momentum balance type 
approach to study velocity profile similarity using Prandtl’s Plus scaling variables for the 
wall-bounded turbulent boundary layer.  It is shown that the Plus scaling variables will in 
fact satisfy the requirements for similarity based on this approach so long as the friction 
velocity values in the flow direction are proportional to 01/( )x x− where x is the distance 
along the wall in the flow direction and 0x  is a constant.  Experimental results are 
examined and found to confirm that certain datasets we tested do in fact have the 
friction velocity values behaving as 01/( )x x− .  For these datasets, we show the Plus 
scaling variables satisfy all of the conditions for similarity using the momentum balance 
type approach.  However, the same velocity profile dataset plots also confirm that 
Prandtl’s Plus scaling variables do not show whole profile similarity in general.  Hence, 
we conclude that the scaling variables discovered by the momentum balance type 
approach as presently constituted are a necessary but not sufficient condition for 
velocity profile similarity.  
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1.  INTRODUCTION 
Beginning with the pioneering work of Reynolds [1], there has been a concerted effort 
to find coordinate scaling parameters that make the scaled velocity profiles and shear-
stress profiles taken at different stations along the wall in the flow direction to appear 
to be similar.  For turbulent boundary layers, the early search for similarity was mostly 
unsuccessful.  This led to the practice of trying to find similarity in subregions of the 
whole profile.  Perhaps the most successful case of partial similarity was developed by 
von Kármán [2] and Prandtl [3] and is known as the Logarithmic Law or “Log Law.”  The 
Log Law states that in a region adjacent to the wall of the turbulent boundary layer the 
average velocity in the streamwise x-direction of a wall-bounded turbulent flow is given 
by 

( ), 1 ln ,
u x y yu

B
u

τ

τ κ ν
 ≅ + 
 

 

where y is the height perpendicular to the solid surface , ν   is kinematic viscosity, κ   
and B are constants, and uτ  is the Prandtl velocity scaling parameter, the so-called 

friction velocity.   
 
Experimental plots of the wall-bounded turbulent boundary layer velocity profiles taken 
at various stations along the wall using uτ  as the velocity scaling parameter and /uτν  as 

the length scaling parameter (the so-called “Plus” scaling factors) have consistently 
demonstrated similarity-like behavior in the near-wall region of the profile.  There has 
been much debate as to whether this is due to the fact that the Log Law or, as some 
believe, a Power Law that is universally applicable for all wall-bounded turbulent flows.  
In any case, one area that has not been explored is the similarity implications using the 
friction velocity as the key scaling variable.  For example, the question of whether the 
Prandtl’s Plus scaling variables even satisfy the conditions for similarity has not been 
studied.  
 
The standard approach for studying similarity is to use the dimensionless momentum 
balance equation.  The search for similarity scaling behavior for the turbulent boundary 
layer using this approach began with the experimental and theoretical work of 
Clauser [4].  Using the friction velocity uτ  as the velocity scaling variable and the 
displacement thickness 1δ  as the length scaling variable, Clauser predicted that 

equilibrium (similar) boundary layers are only obtained for the nonzero pressure 
gradient case when the quantity  

1
2

edp
u dxτ
τ

δ
β

ρ
= −  

is a constant.  In this equation ρ  is the density and ep is the pressure at the boundary 
layer edge.  Rotta [5] and Townsend [6] subsequently developed some additional 
theoretical considerations for turbulent boundary layer similarity using this approach.  

(1) 

(2) 
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More recently, Castillo and George [7] used this approach and found that similarity will 
exist only when the parameter  

s

s

du dx
u d dx
δ

δ
Λ = −  

is a constant.  In this equation δ  is an as yet unspecified thickness scaling variable and 
)(xus  is an as yet unspecified scaling velocity.  Following a similar scheme of keeping 

the thickness scaling variable and the velocity scaling variables as unspecified, 
Weyburne [8] added the dimensionless Reynolds stress transport equation to obtain 
additional restrictions with the result that it was shown that in the outer region of the 
turbulent boundary layer δ  must be a linear function of the type 1 0( )a x xδ = −  and su  

must be s eu u∝  and a power law function of the type 2 0( )m
eu a x x= − , such that 1a , 2a , 

m, and 0x  are constants.    
 
What is relevant here is that in none of these previous momentum balance type 
approaches have explicitly tested using uτ  as the velocity scaling parameter and /uτν  as 

the length scaling parameter to find out whether they satisfy the conditions for 
similarity of the velocity profiles of a turbulent boundary layer.  In what follows, we take 
on this task.  Using the momentum balance equation type analysis, we first confirm 
theoretically that the unknown thickness scaling variable δ  and the unknown scaling 
velocity )(xus  must behave in a manner consistent with the sink flow/wedge flow 
solution.  It is shown that the Plus scaling variables will in fact satisfy this requirement 
for similarity based on the momentum balance equation approach so long as the friction 
velocity values in the flow direction are proportional to 01/( )x x− where x is the distance 
along the wall in the flow direction and 0x  is a constant.  Experimental results are 
examined and found to confirm that certain datasets we tested do in fact satisfy all the 
conditions of whole profile similarity based on the momentum balance type approach 
requirements.  However, the same plots also confirm that Prandtl’s Plus scaling 
variables based plots do not show velocity profile similarity over the whole boundary 
layer region.  Hence, we conclude that the scaling variables discovered by the 
momentum balance type approach are a necessary but not sufficient condition for 
velocity profile similarity. 

 
2.  SIMILARITY EQUATIONS 

The theoretical guidance for discovering similarity scaling laws for the turbulent 
boundary layer started with Clauser [4] who looked at the implications of similarity 
using the x-momentum balance equation.  For a 2-D incompressible turbulent boundary 
layer that is steady state on the mean, the Reynolds-averaged stream-direction 
component (x-direction) of the momentum balance for flow along a plate is given by  
 
 
 

(3) 
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{ } { }
2

2
1 ,u u P uu v uu uv

x y x y x y
∂ ∂ ∂ ∂ ∂ν
∂ ∂ ∂ ∂ ρ ∂

∂
+ + + = − +

∂
     

where the bar above a variable is the Reynolds average operator and the tilde operator 
designates the instantaneous velocity.  What Clauser [4] did was to cast Eq. 4 into 
reduced units in a manner similar to what Blasius [9] and Falkner and Skan [10] did for 
laminar flow over a flat plate.  What one finds in doing this reduction is that each term 
in Eq. 4 can be reduced to a product of a x-functional and a η -functional where η  is the 
reduced y-variable given by /η δ≡ y .  For similarity we must have that the η -functional 
terms do not change as one moves along the plate and that the various x-functional 
terms from Eq. 4 change in a proportional manner as one moves along the plate.  
Equivalently, we can divide through by one of the x-grouping terms and similarity would 
then require that the x-grouping ratios be constants.  Clauser [4] assumed that for the 
turbulent boundary layer flow over a plate that the length scaled as 1δ  and the velocity 

scaled as uτ  which then led to Eq. 2 as one of the x-grouping ratio terms. 
 
A generalized process of transforming x-momentum balance equation starts by using δ  
and su  as the unknown similar scaling variables for the length and velocity.  These 
unknowns must be functions of x but not y.  Next we assume that the stress terms can be 
separated into the product of an x-dependent functional and an η -dependent functional 
as 

( ) ( )2
12 11( ) and ( ) .uv uv x g u uu x gη η= =    

The task of casting x-momentum balance and the Reynolds stress transport equations 
into reduced units using these length, velocity, and stress scaling variables is detailed in 
Appendix 1.    
 
The results of the transformation are that the x-momentum balance equation (Eq. 4) 
reduces to 

2
1 11 2 11 3 12(1 ) ,

1
f ff f g g gα τ η τ τ φΛ′′′ ′′ ′ ′ ′− − − − + + =

−Λ
 

where f is a dimensionless function satisfying the Stream function (Eq. 1.2), where the 
prime represents differentiation with respect to η , and where 

( )

2

1 2 32 22

, , ,
1

( )( ) ( ), , and .
(1 )

s e es s

s s s

s s s ss s s

du dx u du dxdu u d
dx dx u d dx u du dx

duu x dxuu x uv x
u u du dx u d dxu du dx u d dx

δδ δ δα φ
ν ν δ

τ τ τ
δ δδ δ

Λ
= + Λ = − = −

−Λ

= = =
−Λ ++

Similarity of the velocity profiles means that the parameters appearing in Eq. 6, such as
1 2, , , ,α τ τΛ  etc. need to be constant as one moves along the wall in the flow direction.   

 
We note that the x-direction momentum balance equation is but one of a handful of 
equations that govern the flow behavior.  In an earlier report, Weyburne [6] pointed out 

(4) 

(5) 

 (6) 

(7) 
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that another important flow governing equation appropriate to wall-bounded turbulent 
flow similarity was the Reynolds stress transport equation given by 

2

22 2 0 .uv uv u uv Pu u v P u vu v uv uvv
x y y y y x y xy

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ν ν
∂ ∂ ∂ ∂ ρ ∂ ∂ ρ ∂ ∂∂

   
+ − − + + + − + =       

           
      

It is generally known that turbulent velocity profile similarity will only occur if the 
Reynolds shear stress profiles also show similarity.  Hence it makes sense to consider 
the similarity implications of Eq. 8 in addition to the x-direction momentum balance 
equation.  If one applies the same reduction technique used above on the momentum 
balance equation, one finds that the Reynolds shear stress equation becomes 

{ }12 12 4 12 12 12 122 3 0 ,κ εη τ ε χ′ ′ ′ ′ ′ ′′ ′′− − + − + + + =f g f g f g fg g f g additional terms  

where the three additional terms are not written out expressly because they cannot be 
written in terms of  uv   (see Appendix 1) and where 

, , and .s

s s

dud
u dx u d x
ν δ δχ ε κ
δ

= = =  

 
2.1  Near-Wall Flow Similarity 

The requirements for similarity using the momentum balance-type approach consists of 
ensuring the parameters identified in Eqs. 7 and 10 are constant as one moves along the 
wall in the flow direction.  By inspection one solution is to have   

( ) 2
1 0

0
( ) , ,s

aa x x u x
x x

δ = − =
−

 

where 1a , 2a , and 0x  are constants.  This is the so-called sink flow (or wedge flow) 
solution.   
 
For flows with a pressure gradient in the flow direction, the momentum balance 
requires that φ  be a constant.  Taking Λ  as a constant, the general solution to have φ  

(Eq. 7) equal to a nonzero constant is given by 2
s eu a b u= +  where a and b are 

constants.  With only a slight loss of generality (taking a=0), we see that for similarity, 
this reduces to s eu u∝  as first pointed out in this context by Castillo and George [4]. 
 
2.2  Outer Region Flow Similarity 

In the outer region of a turbulent boundary layer on a wall we will assume that the 
viscous forces are negligible.  This means that the viscous terms in Eqs. 4 and 8 are 
negligible (eliminating α  and χ ).  Therefore, the functional form that su  and δ  may 
take is now governed by the fact that Λ , φ , ε , and κ  from Eqs. 7 and 10 must be 
constants.  This means that the functional form that δ  may take is a linear function of 
the type 1 0( )a x xδ = −  such that 1a  and 0x  are constants.   This reduces κ  to  

(8) 

 (9) 

 (10) 

(11) 

(12) 
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1 0( )
,s

s

a x x du
u d x

κ
−

=  

which has the general solution of   
( ) ( )2 0su x a x x κ= −  

where 2a  is a constant.   
 
For flows with a pressure gradient in the flow direction, the momentum balance 
requires that φ  be a constant.  The general solution to have φ  (Eq. 7) equal to a nonzero 

constant is given by 2
s eu a b u= +  where a and b are constants.  With only a slight loss 

of generality (taking a=0), we see that for similarity, this reduces to s eu u∝  as first 
pointed out in this context by Castillo and George [4]. 
 

3.  PRANDTL PLUS SCALING SIMILARITY 
The exact requirements for momentum-balance type whole-profile similarity can now 
be applied to the Prandtl Plus friction velocity-based scaling parameters.  Consider first 
the near-wall region.  Substituting the length scale 1/uτδ ∝  and the velocity scale 

su uτ∝  into Eqs. 7 and 10, then it is possible to show that similarity in the near-wall 
region requires that the friction velocity must be a function of the type 

( )
0

au x
x xτ =
−

 

where a and 0x  are constants.  That is, if the friction velocity behaves as Eq. 14, then the 
Prandtl Plus scaling parameters insure all of the parameters in Eqs. 7 and 10 are equal to 
a constant value.  Next, consider the Outer region.  In the Outer region, the parameters 
given in Eqs. 7 and 10 (neglecting α  and χ , and setting 1κ = − ) will also be constant 
value so long as the friction velocity follows Eq. 14.  Hence, according to the momentum 
balance type approach, all wall-bounded turbulent similarity requirements are satisfied 
using the Prandtl Plus scaling variables so long as the friction velocity behaves as Eq. 14 
and φ  is a constant.  
 
Having φ  constant will have an additional constraint on the similarity requirements for 
the Prandtl Plus scaling parameters.  We note this parameter subsumes the Euler 
equation given as  

1 e e
e

p du
u

x dxρ
∂

− =
∂

 

which therefore only applies to flows with a pressure gradient.  For these cases, as 
noted above, the momentum balance type similarity requires s eu u∝ .  Since we are 
testing whether uτ  is also a similarity parameter, then we must have 

 

(13) 

(14) 

(15) 
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constant,eu
uτ

=
 

the so-called Rotta constraint.   
 

4.  EXPERIMENTAL VERIFICATION 
We are now in a position to answer the question as to whether the Prandtl Plus friction 
velocity-based scaling parameters satisfy the momentum-balance type whole-profile 
similarity requirements.  A number of datasets from the literature were selected based 
on satisfying Eq. 16.  In Figs. 1a-7a we plot some sets of velocity profiles in which the 
plot axes are put in reduced units using the Prandtl Plus friction velocity-based scaling 
parameters.  In these figures the wall is located at 0y+ = .  In all cases there is a region 
near the wall for which all of the profiles overlap, i.e. they display near-wall similarity 
behavior.  The question we want to answer is whether these same datasets also satisfy 
the condition for whole-profile similarity, that is does the friction velocity values fit to 
Eq. 14 and is Eq. 16 satisfied.  First, consider the friction velocity fits.  In Figs. 1b-7b we 
plot the experimental friction velocity as points (+) versus the station location for each 
corresponding dataset.  The red line in each plot is the least squares fit to the points 
using Eq. 14.  In general, the fits are good indicating that Prandtl Plus scaling factors do 
in fact satisfy the condition for constant parameter ratios (Eqs. 7 and 10).  
 
For the flows considered in Figs. 1-5, which do have a pressure gradient present in the 
flow direction, we must also have Eq. 16 hold if  uτ  is to be a similarity parameter.  This 

condition is checked in Figs. 1c-5c which plots this velocity ratio along with average 
velocity ratio value as the red line.  As is evident from the plots, this constraint does in 
fact hold for these datasets (recall that in fact these datasets were selected based on 
this criterion).  It is necessary to note that datasets presented in Figs. 6 and 7 are for flat 
plate flows for which dp/dx=0, and therefore the φ  parameter constraint is not 
applicable.    
 
The experimental results presented above indicate that all of these datasets satisfy the 
conditions for similarity using the momentum balance type approach when using uτ  as 

the velocity scaling parameter and 1/uτ  as the length scaling parameter.  However, it 

also apparent from Figs. 1a-7a that these datasets do not in general display velocity 
profile similarity over the whole profile.   
 
 
 

(16) 
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Figure 1a:  The solid lines are eight Clauser [4]  
profiles plotted in Plus units.   
 

Figure 1b:  Clauser [4] friction velocity (+) along 
with the 0/( )a x x− fitted line. 

Figure 1c:  Clauser [4] velocity ratio (+) along 
with the average value as the red line. 



9 
Approved for public release; distribution unlimited 

 

 

 

 

0 3000
0

20

 

 

u+

y+
0 5

0

5

 

 

u τ
 (f

t/s
)

x  (ft)

0 5
0

20

 

 

ue/uτ

x (ft)

Figure 2a:  The solid lines are six Herring and 
Norbury [11] profiles plotted in Plus units.   

Figure 2b:  Herring and Norbury [11] friction 
velocity (+) and the 0/( )a x x−  fitted line. 

Figure 2c:  Herring and Norbury [11] velocity ratio (+) 
along with the average value as the red line. 
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Figure 3a:  The solid lines are seven Skåre and 
Krogstad [12] profiles plotted in Plus units.   

Figure 3b:  Skåre and Krogstad [12] friction 
velocity (+) along with the 0/( )a x x− fitted line. 

Figure 3c:  Skåre and Krogstad [12] velocity  ratio (+) 
along with the average value as the red line. 



11 
Approved for public release; distribution unlimited 

 

 

 

  

0 5000
0

40

 

 

u+

y+
0 5

0

4

 

 

u τ
  (

ft/
se

c)
x  (ft)

0 5
0

40

 

 

ue/uτ

x  (ft)

Figure 4a:  The solid lines are the Bradshaw 
and Ferriss [13] profiles plotted in Plus units.  

Figure 4b:  Bradshaw and Ferriss [13] friction 
velocity (+) along with the 0/( )a x x− fitted line. 

Figure 4c:  Bradshaw and Ferriss [13] velocity ratio 
(+) along with the average value as the red line. 
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Figure 5a:  The solid lines are twelve Jones, 
Marusic, and Perry [14] profiles plotted in Plus 
units.   
 

Figure 5b:  Jones, Marusic, and Perry [14] friction 
velocity (+) along with the 0/( )a x x− fitted line. 

Figure 5c:  Jones, Marusic, and Perry [14] velocity 
ratio (+) along with the average value as the red line. 
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Figure 7a:  The solid lines are the Wieghardt 
and Tillmann [15] profiles plotted in Plus units.   

Figure 7b:  Wieghardt and Tillmann [15] friction 
velocity (+) along with the 0/( )a x x− fitted line. 

Figure 6a:  The solid lines are the Smith and 
Smits [14] profiles plotted in Plus units.  

Figure 6b:  Smith and Smit [14] friction velocity 
(+) along with the 0/( )a x x− fitted line. 
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5.  DISCUSSION 
The implications of the above results should be viewed in the context of two 
observations which stand out:  1) in spite of satisfying all of the requirements, the set of 
profiles given in Figs. 1a-7a clearly demonstrate that the Prandtl Plus scaling parameters 
do NOT, in general, result in similarity flow behavior (except at the near-wall), and 2) 
while the length scale 1/uτδ ∝  and the velocity scale su uτ∝  have the correct x-
behavior (Eq. 14), it is necessary to point out that only two of the geometries considered 
in Figs. 1-7 conform to the traditional sink flow/wedge flow geometry.      
 
Consider the first observation, that is, the Prandtl Plus scaling parameters do NOT in 
general result in similarity flow behavior in spite of satisfying all of the conditions for 
similarity using the momentum balance type approach.  First of all we must point out 
that the datasets chosen above were not picked at random.  They were picked because 
the experiments in question were intentionally (or unintentionally) set up specifically to 
obtain similar profiles.  In fact only a handful of wall-bounded turbulent boundary layer 
datasets fall into this category.  In any case, given the examples above which do satisfy 
all of the constraints but do not show whole-profile similarity, it must be concluded that 
the scaling variables discovered by the momentum balance type approach are a 
necessary but not sufficient condition for velocity profile similarity.  
 
The implications of this are rather perplexing.  How is it possible to satisfy the conditions 
for similarity using the momentum balance type approach and yet not have similar 
profiles?  One possibility is that there is some other factor that we are not capturing 
with the momentum balance type approach.  Consider the results of Herring and 
Norbury [11] and Jones, Marusic, and Perry [14] shown in Figs. 2 and 5.  It is apparent 
from Fig. 2a and Fig. 5a that there are stations along the flow direction that do in fact 
show similarity-like behavior over the whole boundary layer.  It is important to note that 
these two datasets are the only ones studied here that actually corresponds to the sink 
flow/wedge flow geometry.  Hence it is not unexpected that they show similarity 
behavior.  What is unexpected is that the other datasets do not show similarity in spite 
of satisfying all the requirements.  Thus it may be that there is some other factor that 
we are not capturing with the momentum balance type approach that explains why 
these sink flow results show similarity behavior and the other results do not.  
 
The second related observation is also perplexing in that the scaling velocity under 
consideration behaves as 01/( )x x−  but not all of the flow geometries are the 
traditional sink flow/wedge flow type geometry.  This perplexing result may be due to a 
matter of definition.  Traditional sink flows/wedge flows are associated with laminar 
flow between two converging planes which will have potential flows for which the outer 
velocity eu  will behave as 01/( )x x− .  Since the datasets above all obey the Rotta 
constraint and we have shown that the uτ  values in the flow direction behaves as 

01/( )x x− , then it follows that eu  will also behave as 01/( )x x− , results we have 



15 
Approved for public release; distribution unlimited 

confirmed but have not shown.  Hence, not all flows for which the velocity eu  scales as 

01/( )x x−  corresponds to the traditional sink/wedge-type flow geometry. 
 

6.  CONCLUSION 
Prandtl’s “Plus” scaling variables were examined as velocity profile scaling parameters 
using the momentum balance type approach to similarity.  It was shown that certain 
datasets can be found for which the Plus scaling variables do in fact satisfy all of the 
requirements for similarity based on this approach.  However, the same velocity profile 
datasets also confirm that Prandtl’s Plus scaling variables do not always show whole 
profile similarity.  Hence, we conclude that the scaling variables discovered by the 
momentum balance type approach are a necessary but not sufficient condition for 
velocity profile similarity.  
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APPENDIX 1 
In this section the relevant equations for the momentum balance type approach to 
velocity profile similarity are derived.  Suppose that the x-axis is placed in the plane of 
the wall and that the y-axis is at right angles to this wall into the fluid layer.  
Furthermore, suppose only steady state solutions are considered.  We start with the 
Reynolds decomposition into a mean (or average) component and a fluctuating 
component 

ˆ ,
ˆ ,
ˆ ,

u u u
v v v
p p p

= +
= +
= +







 

where the average components are u, the x-velocity, v, the y-velocity, and p, the 
pressure.  The fluctuating components are u , v , and p .   

The equation for the mass conservation requires 
ˆ ˆ ˆ ˆ

0 0 and 0 .u v u v u v
x y x y x y

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

+ = ⇒ + = + =  

For a two-dimensional, incompressible, turbulent boundary layer, we ASSUME the x-
component of the momentum balance is given approximately by  

{ } { }
2

2
2

1u u p uu v u uv
x y x y x y

∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ∂ ∂ ρ ∂ ∂

+ + + ≅ − +    

where ρ  is the density and ν  is the kinematic viscosity.  Next, we introduce the 
Reynolds stress transport equation given by 

2

22 2 0 .
uv uv u uv Pu u v P u v

u v uv uvv
x y y y y x y xy

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ν ν
∂ ∂ ∂ ∂ ρ ∂ ∂ ρ ∂ ∂∂

   
+ − − + + + − + =       

           
      

 
In order to reduce these equations to dimensionless equations we start by defining a 
dimensionless independent variable  

( )
y
x

η
δ

≡  

where the function )(xδ  is an as yet unknown boundary layer thickness scaling 
parameter that is only a function of x.  Furthermore, we define a stream function 

),( yxψ  in terms of a product of functions as 
( , ) ( ) ( ) ( , ) ,sx y x u x f xψ δ η=  

where ( ),f x η  is a dimensionless function, and )(xus  is the as yet unknown scaling 
velocity.  We ASSUME that the stream function satisfies the conditions 

( , ) ( , ), .x y x yu v
y x

ψ ψ∂ ∂
= = −

∂ ∂
 

This means that 
 
 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

 (1.6) 

(1.7) 
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{ }s

s

d u fv f u
x d x x

δψ δ∂ ∂
= − = − −

∂ ∂
 

where we have used the fact that 

.
( )
y d

x x x dx
η η δ

δ δ
∂ ∂  = = − ∂ ∂  

 

Hence the stream-wise velocity becomes 
 

su u f
y
ψ∂ ′= =
∂

 

where the prime indicates differentiation with respect to η  and where 
1 .

( )
y

y y x
η

δ δ
∂ ∂  = = ∂ ∂  

 

 
Substituting the above variable property similarity variables into the x-component of the 
momentum equation (Eq. 1.3), starting on the left-hand side, we have 

2 2 .s
s s

duu fu u f u f
x dx x

∂ ′∂′ ′= +
∂ ∂

 

The next term is 
{ } 2 .ss

s

d uuu fv ff u f
y d x x

δ∂
δ

∂′′ ′′= − −
∂ ∂

 

Combining these terms  
{ }2 2 .ss s

s s s

d udu uu u f fu v u f ff u f u f
x y dx dx x x

δ∂ ∂ δ
δ

′  ∂ ∂′ ′′ ′ ′′+ = − + − ∂ ∂ ∂ ∂ 
 

The next step is to transform the viscous component in Eq. 1.3 given by 
2

2 2 .suu f
y

∂ν ν
∂ δ

′′′=  

 
ASSUME that the pressure in the boundary layer is constant and equal to the pressure at 
the boundary layer edge and that the Euler equation given by  

1 e
e

dup u
x dxρ
∂

− =
∂

 

holds where ( )eu x  is the velocity at the boundary edge.   
 
ASSUME that the stress terms can be separated into the product of an x-dependent 
functional and an η -dependent functional as 

( ) ( )
2

12 11, .
( ) ( )

uv ug g
uv x uu x

η η= =
  

 

The Reynolds stress terms reduce to  

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 
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{ } { } ( ) ( ) ( )2
11 11 12 .

uu x duu x uv xdu uv g g g
x y dx dx
∂ ∂ δ η
∂ ∂ δ δ

′ ′+ = − + +    

 
Combining the transformed terms, we get the x-component of the momentum balance 
as  

{ }

( ) ( ) ( )

2 2

11 11 12 2 .

ss s
s s s

e s
e

d udu u f fu f ff u f u f
dx dx x x

uu x duu x uv x du ud g g g u f
dx dx dx

δ
δ

δ

δ η ν
δ δ δ

′∂ ∂′ ′′ ′ ′′− + − +
∂ ∂

′ ′ ′′′− + + = +

 

 
For similarity, we will ASSUME that the terms involving /′∂ ∂f x  and /∂ ∂f x  are 
negligible.  The next step is the key to the problem of finding similarity restrictions using 
the momentum balance approach.  Specifically, it is apparent from examination of 
Eq. 1.19 is that similar solutions will only be possible if the variable groupings with an x-
dependence change in the identical manner.  Equivalently, we can divide through by 
one of the x-groupings and similarity would then require that the x-grouping ratios be 

constants.  To this end we divide Eq. 1.19 through by 
{ }ss d uu
dx
δ

δ
.  The transformed 

dimensionless x-component of the momentum balance then reduces to 
2

1 11 2 11 3 12(1 )
1

f ff f g g gα τ η τ τ φΛ′′′ ′′ ′ ′ ′− − − − + + =
−Λ

 

where 

( )

2

1 2 32 22

, , ,
1

( )( ) ( ), , and .
(1 )

s e es s

s s s

s s s ss s s

du dx u du dxdu u d
dx dx u d dx u du dx

duu x dxuu x uv x
u u du dx u d dxu du dx u d dx

δδ δ δα φ
ν ν δ

τ τ τ
λ δ δδ δ

Λ
= + Λ = − = −

−Λ

= = =
+ ++

The factors δ , su , ( )uv x , and  ( )uu x  appearing in Eq. 1.20 are as yet unknown 
parameters. 
 
In a similar fashion we can transform the Reynolds Stress Transport equation given by 
Eq. 1.4.  Substituting the above similarity variables into the Reynolds stress transport 
equation, starting on the left-hand side, we have 

( ){ }12
12 12

( ) ( )
( ) .s

s s

uv x g uv xuuv du u f uv x f g u f g
x x dx x

η∂ δ η
∂ δ

∂ ∂′ ′ ′ ′= = − +
∂ ∂

 
 

The next term is 

( ) { } ( )12 12
1 .s

s

d uuv fv uv x fg uv x u g
y d x x

δ∂
∂ δ

∂′ ′= − −
∂

 
 

The first term on the right-hand side, the Production term, is 

(1.18) 

(1.19) 

 (1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 
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( )
122 2 .su uv xuuv g f

y
∂
∂ δ

′′=   

The next step is to transform the viscous-like component in Eq. 1.4 given by 
( )2

122 2 .
uv xuv g

y
∂ν ν
∂ δ

′′=
 

 

Combining the transformed terms, we get the stress balance as  

( ) ( ) ( )

( ) ( ) { }

12 12 12 12

12 122

( )

2 3 0 ,

s s s
s

s

uv xdu du u duv x f g uv x f g u f g uv x f g
d x d x x dx

u uv x uv x
f g g additional terms

δ δ η
δ δ

ν
δ δ

∂
′ ′ ′ ′ ′− − + − +

∂

′′ ′′+ + =

 

where the three additional terms are not written out expressly because they cannot be 
written in terms of  uv  .  This is not to say that these terms can be neglected.  In fact the 
opposite is true; the three additional terms in Eq. 1.26 include the numerically 
significant energy dissipation rate and the velocity-pressure gradient terms.  However, 
for the purposes of obtaining similarity scaling information for δ  and su , these three 
additional terms would require additional assumptions and the identification of 
additional unknown parameters.  Hence, for the purposes herein, we will leave the 
terms unused. 
 
The last step is to insure that any of the variable groupings with an x-dependence are 
constant.  In order to make the stress equation dimensionless we divide through by 

( )su uv x
δ

 to get the transformed Reynolds stress balance as 

{ }12 12 4 12 12 12 122 3 0 .f g f g f g fg g f g additional termsκ εη τ ε χ′ ′ ′ ′ ′ ′′ ′′− − + − + + + =  
where  

, , and .s

s s

dud
u dx u d x
ν δ δχ ε κ
δ

= = =  

(1.25) 

(1.26) 

 (1.27) 

 (1.28) 
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